About: Base Numbers

Similarly 'decimal' is a base ten number with ten numbers per digit. We normally do not think of decimal in such a complex way.

per digit
10:9
09:8
08:7
07:6
06:5
05:4
04:3
03:2
02:1
01:0

For each digit: think about this

0-9 = 10 numbers; However ten is two digits.


when we use exponential notation for each digit: a three digit base 10 number could look like this;


[(10^2)*n3] + [(10^1)*n2] + [(10^0)*n1];

where: n3 = n2 = n1 = '9'; <-- or '999'

Similarly any base number can be written in exponential form, where the represented number of digits come from the encrypted number. It is much easier to understand the crucial decription accuracy in which these base numbers are written, by first understanding the exponential representation.

Say we have a number '1234' and want to write it in binary(base 2) digits = :: 1 -or- 0 ::

how namy digits long is it?

create a list;

([2^0]*1) = 1
([2^1]*1) = 2
([2^2]*1) = 4
([2^3]*1) = 8
([2^4]*1) = 16
([2^5]*1) = 32
([2^6]*1) = 64
([2^7]*1) = 128
([2^8]*1) = 256
([2^9]*1) = 512
([2^10]*1) = 1024
([2^11]*1) = 2048

That should be enough, considering #1234 is far less than #2048; So, naturally the furthest digit in this list ends with 'zero'

By subtracting the whole '1234' from remaining notation's index we may complete the string of 1's and 0's likewise:

([2^11]*1) = -2048 + 1234 < 0
([2^10]*1) = -1024 + 1234 = 210
 ([2^9]*1) = -0512 + 210  < 0
 ([2^8]*1) = -0256 + 210  < 0
 ([2^7]*1) = -0128 + 210  = 82
 ([2^6]*1) = -0064 + 82   = 18
 ([2^5]*1) = -0032 + 18   < 0
 ([2^4]*1) = -0016 + 18   = 2
 ([2^3]*1) = -0008 + 2    < 0
 ([2^2]*1) = -0004 + 2    < 0
 ([2^1]*1) = -0002 + 2    = 0
 ([2^0]*1) = -0001 + 0    < 0

the binary number encryption for decimal '1234' is '0'+'10011010010' and this binary number is read from right to left < <




hexadecimal


It is easy to look at a table of hexadecimal numbers '0'-'255'. This utalizes a dual digit system to define the values.

0123456789ABCDEF
00123456789101112131415
116171819202122232425262728293031
232333435363738394041424344454647
348495051525354555657585960616263
464656667686970717273747576777879
580818283848586878889909192939495
696979899100101102103104105106107108109110111
7112113114115116117118119120121122123124125126127
8128129130131132133134135136137138139140141142143
9144145146147148149150151152153154155156157158159
A160161162163164165166167168169170171172173174175
B176177178179180181182183184185186187188189190191
C192193194195196197198199200201202203204205206207
D208209210211212213214215216217218219220221222223
E224225226227228229230231232233234235236237238239
F240241242243244245246247248249250251252253254255

The only thing more complicated than the hexadecimal numbering system is the application of hexadecimal numbers in strings.

Usually in strings, especially in graphics, the digits are read '214365', what I mean by this is there are three sets of double hex put into a string with the first ordered par (right to left::ordered pair)[first(left to right)to last]

This graphic may help

Whether Red is the first pair, or blue is; We can not decypher a standard because of this reason: When binary represents the string of [# RR GG BB] the index is not used. 100001(red) 1100111(green) 1100101(blue) are each seperate channels, &100001+1100111+1100101=2189157 is not the index, the binary units must be formated, and Red is first. Fortunately the index is not used for tiny 64x64 pixel images, except on this site.

I created this URL with, in mind, a standard may be developed before it's wide use in indexing images and achieving lookup "in words" to describe the image. the index only protects in finding duplicate images. Even in object detection from a photographic lense, the probibility of having the exact same image is very low.


Trinary

zero, one, or two as placeholders.

Remember to use expotential notation to describe the digits and the result will be individual and uniqe per base 3 number.


(3^0)=1*times*[first digit]<-- from the right
(3^1)=3*times*[second digit]
(3^2)=9*times*[third digit]<-- to the left
'2"2"2' = 26;

For any base number the notation is similar. Always begin zero when counting placeholder maximums and add 1 for the base number. Trinary is base 3, but the placeholders for each digit are a maximum of 2 ; And the exponent is acted on the base number, then multiplied per digit. Once all digit decimals are added together there is understanding.


Reading further

    Let's begin working with the smallest square, of four to describe a unit:


binary  decimal  hexadecimal  trinary 
0000000000
0001011001
0010022002
0011033010
0100044011
0101055012
0110066020
0111077021
1000088022
1001099100
101010A101
101111B102
110012C110
110113D111
111014E112
111115F120

If you don't understand, this chart won't help.

The explination does not give an example of when to use encryption types.

Long Strings are Letters and words are Sums

Begin:
256 = FF;
Red = Green = Blue = (0-255)
pixel = [(1)*Red]+[(256)*Green]+[(65536)*Blue]
in any given pixel = 16777215 combinations;
width = 64
height = 64
4096 = (64^2) solve: !([16777216]^4096) <-- factorial gives
blank 'white' answer.
Let's start with binary:

Darkness = "0";
Ambiance = "1";

there are four squares within the boundary

when the width equals the height, squares are important

        
we are asking how many combinations there are and numbering them comes naturally.
Also, it is important to keep the quadrant we are working in on mind.
For binary the colors are (0 -or- 1) only
we do not want to load all the images in memory (2)^4096 == 1,234 digits long
=104438888141315250669175271071662438257996424904738378038423348328395390797155745684882681_&
&_19349975583408901067144392628379875734381857936072632360878513652779459569765437099983403_&
&_61590134383718314428070011855946226376318839397712745672334684344586617496807908705803704_&
&_07128404874011860911446797778359802900668693897688178778594690563019026094059957945343282_&
&_34693030266964430590250159723998677142155416938355598852914863182379144344967340878118726_&
&_39496475100189041349008417061675093668333850551032972088269550769983616369411933015213796_&
&_82583718809183365675122131849284636812555022599830041234478486259567449219461702380650591_&
&_32456108257318353800876086221028342701976982023131690176780066751954850799216364193702853_&
&_75124784014907159135459982790513399611551794271106831134090584272884279791554849782954323_&
&_53451706522326906139490598769300212296339568778287894844061600741294567491982305057164237_&
&_71548163213806310459029161369267083428564407304478999719017814657634732238502672530598997_&
&_95996090799469201774624817718449867455659250178329070473119433165550807568221846571746373_&
&_29688491281952031745700244092661691087414838507841192980452298185733897764810312608590300_&
&_1302413467189726673216491511131602920781738033436090243804708340403154190335. ^-- files
    times file length is for tiny 64x64px only
    And, who knows how long to view all monochrome images.

However, with a measured image, we can find it's numerical order of sequence; in a few seconds.


base_64

number  code   purpose:
00 to compress length
01 ato compress length
02 bto compress length
03 cto compress length
04 dto compress length
05 eto compress length
06 fto compress length
07 gto compress length
08 hto compress length
09 ito compress length
10 jto compress length
11 kto compress length
12 lto compress length
13 mto compress length
14 nto compress length
15 oto compress length
16 pto compress length
17 qto compress length
18 rto compress length
19 sto compress length
20 tto compress length
21 uto compress length
22 vto compress length
23 wto compress length
24 xto compress length
25 yto compress length
26 zto compress length
27 Ato compress length
28 Bto compress length
29 Cto compress length
30 Dto compress length
31 Eto compress length
32 Fto compress length
33 Gto compress length
34 Hto compress length
35 Ito compress length
36 Jto compress length
37 Kto compress length
38 Lto compress length
39 Mto compress length
40 Nto compress length
41 Oto compress length
42 Pto compress length
43 Qto compress length
44 Rto compress length
45 Sto compress length
46 Tto compress length
47 Uto compress length
48 Vto compress length
49 Wto compress length
50 Xto compress length
51 Yto compress length
52 Zto compress length
53 0to compress length
54 1to compress length
55 2to compress length
56 3to compress length
57 4to compress length
58 5to compress length
59 6to compress length
60 7to compress length
61 8to compress length
62 9to compress length
63 .to compress length
0" "blank space

An index is used to convert the digits into a serialized data type, in most cases [a long file]. A base number greater than ten; compresses the "number" into less digits. Whereas, a base number smaller than ten inflates the digits beyond decimal into much smaller 'workers'. The english alphabet [upper]+[lower]case+[1-9] with only one punctuation and a space contain words in a language. The combination of letters have meaning in cotext. However, in an encryption, the data set may contain broken-meaning from the language 'letters' that form an extremely long number in decimal. Hince, the reason for using the base number larger than ten. Infact, the calculations between such numbers must be designed by the computer person who manipulates the data.

    Did you know that many codes are redefined because the computer language itself has a cost?

The ammount of time it takes to understand code is comperable to the ammount of time it takes to write successful code.


Applying a number larger than a calculator can handle

Square One:

    This article begins to help us understand how a calculator defines it's functions. A standard calculator tells the display to use Numeric letters and display the correct number translations via logic. I am not certain that it does not just index the entire list of addition, subtraction, multiplication, division and other operators that we will ignore for this exercise.

I am not a master of any language I know, and admit that; litterally, I mean how I say, not letter for letter.

in mathematics:
    [addition] is primarily forign and using a single digit or even sixteen or more digits per calculation is acceptable.
    [subtraction] is much like addition except it adds the difference of the letters. We want positive numbers only for indexing purposes. The number increases. To bring it back as an image, we subtract from the index until it reaches zero.
    [simple] even exponetial notation may be thought of as addition. Or, by the time we figure the way to teach a computer to read additional functions, the purpose is lost.

Formating Numbers

leading zeros to line up string lengths

10 has two digits and 9 has only one

unless nine is written 09

    So, number 0-1-2-3-4-5-6-7-8-and-9 get one-thousand two-hundred thirty-three leading zeros. Now all numbers are the same length. And, even-more confusing is that words [strings] are read from left to right. +Plus, length is measured from the left. In otherwords, if you want to return the length of five for 10,000, the leading zeros will takeover from the left and return "00000". The correct notation is #1234 - minus five is 1229 to 1234;., Ok, enough complaining.


Address of -null or true-

        For the purpose of images, flat. Rendering speeds vary before preformance. To call a word and see it as others visualize. The purpose of this article is to apply education to every-day-life. Though it is not far off that augmented reality people handaling security issues will rome the stores of isles with the aid of Global Positioning to find thier item.

        Drone only zones of surface robots finding and retrieving orders to recognise parts of images as a reference to (tangible) objects. Electronic shopping within a Virtual Reality mall or struct designed for small businesses to operate fully (online). The future is now, and we will build it.

        Since we bit off more than we can chew, let me re-gurgitate.

    O.K., Binary from

unacredited skills:

begin again...

binary is a _2 imageO-or-l natural  machine 
false,false,false,false    0000   0000
false,false,false,true     1000   0001
false,false,true ,false    0100   0010
false,false,true ,true     1100   0011
false,true ,false,false    0010   0100
false,true ,false,true     1010   0101
false,true ,true ,false    0110   0110
false,true ,true ,true     1110   0111
true ,false,false,false    0001   1000
true ,false,false,true     1001   1001
true ,false,true ,false    0101   1010
true ,false,true ,true     1101   1011
true ,true ,false,false    0011   1100
true ,true ,false,true     1011   1101
true ,true ,true ,false    0111   1110
true ,true ,true ,true     1111   1111

We have 4096 nodes of true/false value to define a character +plus a string ideograph description (keywords). This is an example of the "eudcedit.exe" custom font dialog. There is a maximum memory usage cap that is well below defining all possible combinations. Text's are graphics, And; the input is small, when keyboards existed. Before "touch"-screen technology.

I began to wonder, why not a visual language included in parallel with lettters, symbols, ideographs, characters.. so on.;

      Then the emoji came.

     full 24 bit. Reviewing my tiny square..

     0000 0000 | 0000 0000 | 0000 0000

          I have never read a number so massive,
     per each; with a combination of:
          16,777,216 per pixel
          ::29,593digits::!for a tiny emoji.



So, for small images the listing order is defined; However it is premature. We have not established the reading order: xy coords.. Quadrants. What information is read first?


          Grayscale: when (RED = GREEN = BLUE)

#000000#010101#020202#030303#040404#050505#060606#070707#080808#090909#0A0A0A#0B0B0B#0C0C0C#0D0D0D#0E0E0E#0F0F0F
#101010#111111#121212#131313#141414#151515#161616#171717#181818#191919#1A1A1A#1B1B1B#1C1C1C#1D1D1D#1E1E1E#1F1F1F
#202020#212121#222222#232323#242424#252525#262626#272727#282828#292929#2A2A2A#2B2B2B#2C2C2C#2D2D2D#2E2E2E#2F2F2F
#303030#313131#323232#333333#343434#353535#363636#373737#383838#393939#3A3A3A#3B3B3B#3C3C3C#3D3D3D#3E3E3E#3F3F3F
#404040#414141#424242#434343#444444#454545#464646#474747#484848#494949#4A4A4A#4B4B4B#4C4C4C#4D4D4D#4E4E4E#4F4F4F
#505050#515151#525252#535353#545454#555555#565656#575757#585858#595959#5A5A5A#5B5B5B#5C5C5C#5D5D5D#5E5E5E#5F5F5F
#606060#616161#626262#636363#646464#656565#666666#676767#686868#696969#6A6A6A#6B6B6B#6C6C6C#6D6D6D#6E6E6E#6F6F6F
#707070#717171#727272#737373#747474#757575#767676#777777#787878#797979#7A7A7A#7B7B7B#7C7C7C#7D7D7D#7E7E7E#7F7F7F
#808080#818181#828282#838383#848484#858585#868686#878787#888888#898989#8A8A8A#8B8B8B#8C8C8C#8D8D8D#8E8E8E#8F8F8F
#909090#919191#929292#939393#949494#959595#969696#979797#989898#999999#9A9A9A#9B9B9B#9C9C9C#9D9D9D#9E9E9E#9F9F9F
#A0A0A0#A1A1A1#A2A2A2#A3A3A3#A4A4A4#A5A5A5#A6A6A6#A7A7A7#A8A8A8#A9A9A9#AAAAAA#ABABAB#ACACAC#ADADAD#AEAEAE#AFAFAF
#B0B0B0#B1B1B1#B2B2B2#B3B3B3#B4B4B4#B5B5B5#B6B6B6#B7B7B7#B8B8B8#B9B9B9#BABABA#BBBBBB#BCBCBC#BDBDBD#BEBEBE#BFBFBF
#C0C0C0#C1C1C1#C2C2C2#C3C3C3#C4C4C4#C5C5C5#C6C6C6#C7C7C7#C8C8C8#C9C9C9#CACACA#CBCBCB#CCCCCC#CDCDCD#CECECE#CFCFCF
#D0D0D0#D1D1D1#D2D2D2#D3D3D3#D4D4D4#D5D5D5#D6D6D6#D7D7D7#D8D8D8#D9D9D9#DADADA#DBDBDB#DCDCDC#DDDDDD#DEDEDE#DFDFDF
#E0E0E0#E1E1E1#E2E2E2#E3E3E3#E4E4E4#E5E5E5#E6E6E6#E7E7E7#E8E8E8#E9E9E9#EAEAEA#EBEBEB#ECECEC#EDEDED#EEEEEE#EFEFEF
#F0F0F0#F1F1F1#F2F2F2#F3F3F3#F4F4F4#F5F5F5#F6F6F6#F7F7F7#F8F8F8#F9F9F9#FAFAFA#FBFBFB#FCFCFC#FDFDFD#FEFEFE#FFFFFF

various incryption(s)


16 colors

black maroon red green olive lime yellow navy purple teal gray silver blue fuchsia aqua white

the 16 grayscale

 1-00  2-11  3-22  4-33  5-44  6-55  7-66  8-77  9-88 10-99 11-AA 12-BB 13-CC 14-DD 15-EE 16-FF

trinary reduction

3*3*3=26

64

000     100     200     
001     101     201     
002     102     202     
003     103     203
300    
301    
302    
303    
310    
311    
312    
313    
320    
321    
322    
323    
330     
331     
332     
333     
010     100     200     
011     101     201     
012     102     202     
013     103     203     
020     120     220     
021     121     221     
022     122     222     
023     123     223     
030     130     230     
031     131     231     
032     132     232     
033     133     233
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

512 = 8*8*8

4096 = 16*16*16

        (4*4)(4*4)(4*4)

16777216 = (256*256*255)+(256*255)+(1*255)

                1111 1111  1111 1111  1111 1111

4*4*4 = 8*8

4*4*4 = 64

#000000 #550000 #AA0000 #FF0000 #005500 #555500 #AA5500 #FF5500
#00AA00 #55AA00 #AAAA00 #FFAA00 #00FF00 #55FF00 #AAFF00 #FFFF00
#000055 #550055 #AA0055 #FF0055 #005555 #555555 #AA5555 #FF5555
#00AA55 #55AA55 #AAAA55 #FFAA55 #00FF55 #55FF55 #AAFF55 #FFFF55
#0000AA #5500AA #AA00AA #FF00AA #0055AA #5555AA #AA55AA #FF55AA
#00AAAA #55AAAA #AAAAAA #FFAAAA #00FFAA #55FFAA #AAFFAA #FFFFAA
#0000FF #5500FF #AA00FF #FF00FF #0055FF #5555FF #AA55FF #FF55FF
#00AAFF #55AAFF #AAAAFF #FFAAFF #00FFFF #55FFFF #AAFFFF #FFFFFF

Selecting a Quadrant

                color

R
(16^0)*15 = 1*15     15
(16^1)*15            240
G
(16^0)*15 = 1*15     15
(16^1)*15            240
B
(16^0)*15 = 1*15     15
(16^1)*15            240
BGR
((256^2)*255)+((256^1)*255)+((256^0)*255) = 16777216
index of smallest square
01
0  
1  
0,0 - ((256^2)*255)+((256^1)*255) + ((256^0)*255)+_
1,0 - ((256^5)*255)+((256^4)*255) + ((256^3)*255)+_
0,1 - ((256^8)*255)+((256^7)*255) + ((256^6)*255)+_
1,1 - ((256^11)*255)+((256^10)*255)+((256^9)*255)
-or-
[(256^12)-1]=79,228,162,514,264,337,593,543,950,335+0"combinations"
-or-
0,0 - ((16777216^0)*16777215)+_
1,0 - ((16777216^1)*16777215)+_
0,1 - ((16777216^2)*16777215)+_
1,1 - ((16777216^3)*16777215)

           monochrome

(2^0)+(2^1)+(2^2)+(2^3) = [(2^4)-1]